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By Herbert S. Ribner 

SUMMARY 

An isosceles triangle twisted into a screw surface about its 
axis is proposed as a propeller for transonic flight speeds. The 
purpose is to attain the drag reduction associated with large 
sweepback in a structurally practicable configuration. A mathe- 
matical theory for such a propeller is presented. Calculations 
taking account of wave and skin-friction drag indicate a net effi- 
ciency of the order of 80 percent at Mach number 1.1. A 12-foot 
propeller is estimated to be able to absorb 18,500 brake horsepower 
at 8^0 miles per hour at sea level. 

INTRODUCTION 

The critical speed of a propeller can be raised by using wide 
thin blade sections and by sweeping the blades forward or rearward. 
High bending stresses caused by centrifugal force limit the amount 
of sweep that can be used. A propeller that avoids the centrifugal 
limitations is proposed, which permits designs for Mach numbers 
previously considered structurally impracticable. 

Theory (references 1 and 2) suggests that airfoils of triangular 
plan form should exhibit a relatively good lift-drag ratio at super- 
sonic speeds for which the triangle is contained well within the 
conical sound wave (Mach cone) emanating from the apex. The prin- 
ciple may be applied to attain efficient propulsion at transonic and 
supersonic speeds by combining rotation about the arts of symmetry 
with axial translation, nose forward- A twist of the plan form is 
contemplated so that it forms a screw surface of high pitch. Dif- 
ferent amounts of pitch for this screw surface would serve the same 
function as blade angle serves for conventional propellers • 

A two-view drawing of such a propeller is shown as figure 1. 
The figure shows a design for a Mach number of the order of 2 chosen 
to indicate the capabilities of the propeller at supersonic speed. 
The practical field of application is more likely to be in the 
transonic-speed range in which a blunter triangle is utilized. 
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SYMBOLS 

M Mach number frlifiht velocity \ 
VSpeed of sound / 

$ velocity potential 

CD angular velocity, radians per second 

n angular velocity, revolutions per second (ci>/2rt) 

x} y, z         rectangular coordinates (fig- 2) 

r semi-width of triangle at x 

T\ arc cos y/rj more extended significance in appendix B; 
propulsive efficiency 

P pressure 

p mass density of air 

T flight velocity 

E radius of propeller 

D diameter of propeller ("base of isosceles triangle) 

"b "blade chord of propeller 

"b0 root "blade chord of propeller (height of isosceles tri- 
angle) 

p pitch of propeller 

q. dynamic pressure ( ipV J 

t time 

J advance-diameter ratio (v/nD) 

N normal force 

Q torque 

T thrust 
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Y force parallel to y-axis 

I moment of inertia 

7 acute angle "between x-axis and "blade section 

a angle of attack 

°D dra*-; coefficient (Drag/qS) 

S wing area 

Subscript ,s and superscripts: 

I» «E • measured at leading edge. 

TJ3. measured at trailing edge 

8 due to suction 

n due to normal force • 

f due to skin friction 

P dixe to pressure 

i ' ideal 

E resultant 

wt weighted 

THEORY FOR FLAT PLAN FORM 

The theory that is developed herein is derived from the theory 
of two-dimensional flows presented in reference 1. The present 
treatment for the rotating triangle, as that of reference 1 for 
the triangle at an angle of attack, applies to the limiting condi- 
tion of very low aspect ratio. The limitations on aspect ratio 
are discussed in the section entitled "Aspect ratio" and in 
appendix A. 

Reference 1 points out that the flow, ahout a pointed airfoil 
of very low aspect ratio may he considered two dimensional when 
viewed in cross sections perpendicular to the direction of motion. 
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Consider 'a long flat triangular airfoil moving point foremost and 
rotating about the axis' of symmetry. The flow pattern in a plane 
cutting the airfoil at a distance x   from the nose is essentially 
the two-dimensional flow produced "by a flat plate rotating with 
angular velocity a>.   Figure 3 shows this flow as viewed from a 
reference system-at rest in the undisturbed fluid for OD clockwise. 

The surface velocity potential of the flow Is given hy (refer- 
ence 3) 

4 = ±r®T2  sin 2n 
4 

±~a& \/r2 - y2 (1) 

v 
where . cos TI = — and the sign changes in going from the upper to 

r 
the lower surface of the airfoil. From.reference 1 the local- 
pressure difference is 

AP = 2pV ~ 
dx 

d# dr 
= 2pV ~ — 

or dx 

= 2pV — — (2) 
orh0 

Pressure distribution.- Carrying out the differentiation indi- 
cated in equation (2) gives 

AP = pVo>( — )   ^  • (3a) {-1 T= 
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or 

^ * 2*— cot T) • (3fb): 

^0 J - 

where J ia the advance ratio V/nD. The spanwise. pressure dls^., 
tribution (fig. h) is thus similar at different distances x from 
the vertex tut magnified in proportion to z. 

The spanxd.se distribution of normal force is given by 

AT.E. 
dN 

<3y 
AF dx 

yL.E. 

•which according to equation (2) is t . 

dN 
~ = 2pWT.E. 

Inserting the value of 4   from equation (1) results in 

dN     v/2   2 

<*y 

1 --.2 ^pVdEr sin 2T) (^) 
o 

This spanwise load distribution is shorn in figure 5« 

dN 
Torque. - The integration of y — dy across the span gives 

dy 
for the torque of the untwisted propeller 

Q = JLPDW (5) 
128 
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Thrust.- For the present case of a flat or untwisted airfoil, 
the pressure distribution normal to the surface has no forward com- 
ponent; therefore, any thrust must arise from suotion along the 
leading edge. Consider the pressure distribution about a thin 
elliptic cylinder rotating about the axis of symmetry. (See 
appendix B.) There is a suction tending to separate the tvo halves 
laterally. This suction is obtained "by integrating the lateral 
component of the pressure force from the middle of the "bottom sur- 
face around the right edge to the middle of the top surface. The 
limiting value of this suction per unit length as the elliptic 
cylinder is shrunk into a flat plate is obtained as (appendix B) 

fsA3 (6) 
o 

where r is the semiwidth of the plate. The infinite negative 
pressure at the edges of the rotating flat plate thus gives rise 
to a finite suction force per unit length of edge. 

The two long sides of the triangular propeller, which form 
the leading edges, have been considered to be sufficiently near 
parallel for the flow to be approximately two dimensional about 
any section normal to the axis of rotation. There is therefore a 
suction along the leading edges given by the value of Y in equa- 
tion (6) wherein r is nowr interpreted as the local semi width of 
the airfoil at distance x from the nose. (See fig. 6.) The 
suction on the length of edge between y and y + dy has a thrust 
component Y dy. The thrust per unit length of span is therefore 

dT 
— = Y 
ay 

-CtD jyj- 
8 

where Jy| has been substituted for r in equation (6) since |y|=r 
at the edges. A graph of this thrust distribution is shown in figure 7- 

The integration of dT/dy along the span gives 

(7) 
256 

,v 
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for the thrust of the untwisted propeller. This value, in -which the 
profile drag is neglected, is called the ideal thrust. The ideal 
thrust is thus independent of forward speed so long as equation (7) 
is applicable. Applicability is limited to the range of small local 
angle of attack, or high valueB of V/nD. 

Efficiency.- The ideal efficiency of the flat triangular pro- 
peller (that is, the'efficiency with profilef drag neglected) is 

T^ 
1l =  

Qyo 

The insertion of equations (5) and (7) gives a value of l/2, or 
50 percent. It is shown hereinafter that the addition, of a suitable 
twist allows a peak ideal efficiency of 100 percent. 

Origin of the thrust.- The wake of an ordinary propeller "behaves 
like a twisted ribbon moving axially rearward. Backward momentum 
is imparted to the air within the screw threads of the ribbon. The 
thrust is ordinarily equated to the time rate of increase of this 
momentum. The untwisted triangular propeller, however, develops 
thrust according to the potential theory by generating a static- 
pressure rise outside the wake, rather than by imparting backward 
momentum.' In this case, the wake behaves like a flat ribbon that 
extends from the trailing edge of the triangle and rotates rigidly 
with it. (See following paragraph.) This axially rotating ribbon 
imparts no rearward momentum, but the air disturbed by its rotation 
experiences a change in static pressure obtainable by Bernoulli 's 
equation. Consider a plane x = Constant that cuts the rotating 
wake at right angles a great distance behind the propeller. The 
pressure distribution is obtained and integrated over such a plane 
in appendix C. There results a net pressure force exactly equal to 
the value of thrust previously obtained. 

Other relationships.- The assumption of two-dimensional flows 
about the triangular airfoil implios that the trailing vorticity 
has Just the right strength to behave as a rigid extension of the 
widest part of the airfoil. The wake acts, therefore, like a flat 
ribbon of width D rotating with angular velocity ai. According 
to Lamb (reference 3)> the kinetic energy per unit length of the 
wake is 

K.E. = -~#AD2 (8) 
256 
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With this -written in the form 

K.E. = hm2 

2 

the virtual moment of inertia of the flow is obtained as 

I =  pD 
128 

The rate of increase of the total angular momentum of the wake 
Bhould he a measure of the torque on the propeller. It is 

Q.= 3toV 

n -pDccY 
128 

This is identical with the expression for the torque (equation (5)) 
obtained from a consideration of the pressure distribution over the 
propeller. 

Again, the rate at which work is dono on the fluid by the torque 
is 

Power input = QPü 

pD CD 
128 

Also, the rate at which the kinetic energy of the wake is increasing 
is (see equation (8)) 

«  4 2_ 
Wake power = ——pD co V 

'256 
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The power input minus the voice power should equal the useful power 
as follows: 

jt k ?         n     1). 2, 
Thrust power =» ——pD CD T •* pD CD v 

128      256 

The thrust is therefore 

256 

= TV 

T is —!-p33(D 

256 -s 

which is in agreement with the result of equation (7) obtained from 
a direct consideration of the suction at the leading edge. 

THEORY FOE PLAN FORM WITH TWIST 

The triangular plan form of the proposed propeller may "be given 
a helical twist. In this way, the pressure distribution normal to 
the surface contributes a thrustwise component. The total thrust 
comprises this component together with the leading-edge suction that 
constitutes the entire thrust for the flat propeller. It will be 
shown that with twist an ideal efficiency of 100 percent is 
approached in the limiting case of very light loading, as for a 
conventional propeller. 

According to reference 1, the flow about a pointed airfoil of 
very low aspect ratio may be considered two dimensional when viewed 
in cross sections perpendicular to the direction of motion. This 
statement appears to be applicable to airfoils with small twist 
(high pitch) in addition to flat airfoils. In the case of a twiBted 
airfoil, the two-dimensional-flow pattern shown in figure 3 would 
show a relative rotation at a different axial distance to conform 
to the twist of the surface. Consider a section of the propeller 
cut at radius y by a plane parallel to the axis of rotation. The 



10 MCA TN No. 1303 

section makes the small angle 7 with the direction of the ails. 
Then the angle 7 is related to the pitch p "by 

2«y tan 7 = 22: (9) 

According to figure 8, the velocity component normal to the section 
is 

coy cos 7-1  sin 7 

By virtue of equation (12) this equals 

OiJ  cos 7 (l-£) 
V 

vhere J ~  —. For 00s t\ = 1/ it is approximately 
riD 

(l-£) oar {1 - -sL 1 (10) 

The corresponding velocity component for the flat plan form is a>y. 

Torque • - According to the foregoing discussion, the slightly 
twisted plan form (pitch, p) rotating with angular velocity a> 
exhibits the same two-dimensional-flow pattern at a section x 
as a flat plan form rotating with angular velocity approxi- 

mately (all — I. The pressure distribution for the slightly 

twisted plan form is thus the pressure distribution for the flat 

plan form with a> {1 r- 1 in place of to. The pressure on an 

element of propeller at point (x,y) of width dy and slant length 

dx/cos 7 contributes to the torque an amount y ÄP dy  cos 7. 
cos 7 
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Because the factor cos 7 cancels, this contribution has the same 

form as for an untwisted plan form. Inserting tu (1 - —-• ) for a> 

in equation (5) gives the total propeller torque as approximately 

123 V " PA>) 

J-OD^jfl - 4; \ (ID 
256      V   p/0/ 

This is the ideal propeller torque "because profile drag has not 
"been taten into account. It differs "but little from the net pro- 
peller torque and, therefore, the subscript 'i is omitted. 

with to [ 1 — J to acoount for the twist, as was done for the 

Thrust component of leading-edge suction.- The suction Y per 
unit length of edge is obtained from equation (6) "by replacing ü> 

P/D; 
torque. The forward component of the suction on the length of edge 
"between y and y + dy is the element of thrust. The expres- 
sion Y dy represents this element exactly for the untwisted plan 
form and approximately for the slightly twisted plan form. Thus 

dT & Y dy s 

and the integral over the span gives the suction thrust 

Thrust component of the normal force.- The forward component 
of the normal force on an element of propeller at point (x,y) of 
width dy and slsnt length dx/cos 7 is 
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which equals 

dx 
£P  dy sin 7 

cos 7 

ÄP.dx dy-^ 
P 

Integrating from the# leading edge to the trailing edge gives "by- 
virtue of equation (2) 

dT- 

<3y 

n 
= 2pY# 

2«y 
I.E. 

(13) 

•where $ is given "by equation (l). Equation (13) gives the span- 
wise distribution of the thrust component of the normal force and 

is shown in figure 9. The integral over the' span, with •(x •£) 
in place of CD, yields the total thrust component of the normal 
force 

T    «^V-^Yl--^ n  I28    p/Dl   p/D^ 
(HO 

Net thrust.- The ideal thrust is Tß + Tn, which simplifies 

to 

-£*.V T. = ——par 
1  250 

(15) 

Ideal efficiency.- The ideal efficiency of the triangular 
propeller with helical twist is 

*• . "-*•.*. • --.. 



NACA TIT No. 1303       - 13 

T-jV- 

1 /   Advance-diameter ratio 1 .,,» 
-11 +  j         (16) 
2 \   Pitch-diameter ratio 

where the second term in parenthesis is less than or equal to unity. 
If this second term exceeds unity, both thrust and torque are nega- 
tive and the system acts as a windmill. Work of amount -TV is 
done on the system in forcing it forward through the air, and the 
system is capable of doing useful work -Qa> against a resisting 
torque. The efficiency is thus expressed "by the reciprocal of 
equation (l6) in the windmill condition and cannot exceed unity in 
either condition. 

The ideal efficiency of the system acting as a propeller 
approaches unity as the advance ratio increases to approach the 
pitch ratio. At equality the twist of the propeller exactly fits 
the helical path. The condition of high efficiency is, therefore, 
a condition of small angle of attack or light loading, just as it 
is for the conventional propeller. 

As pointed out previously, the assumption of two-dimensional 
flow about the triangular airfoil implies that the trailing vor- 
ticity has just the right strength to behave as a rigid extension 
of the widest part of the airfoil. For a twisted triangle the 
wake acts therefore like a continuation of the screw surface 
indefinitely rearward. The twisted triangular propeller is thus 
a propeller of minimum induced loss of energy according to Betz 's 
criterion (reference k)  that the wake act like a rigid screw sur- 
face in axial rotation or rearward translation. 

APPLICATION OF THEORY 

Failure of theory near speed of sound.- In the immediate 
vicinity of M = 1, the assumption of small disturbances is 
violated. The theory therefore fails in this region. Unpublished 
free-flight data show little variation of lift-curve slope and a 
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smooth rise of drag with Mach number through the speed of sound for 
plan forms with considerahle leading-edge sweepback. It is rea- 
sonable, therefore, to expect no marked drop in the efficiency of 
the triangular propeller at M = 1, although the predicted thrust 
and torque may he in error. 

Profile drag.- The ideal thrust and torque, for which equa- 
tions have "been ohtained, are the values in the absence of profile 
drag. The primary effect of the profile drag is a reduction in 
thrust although there is an appreciable increase in torque. It is 
convenient to assign the entire power wastage in profile drag to 
thrust reduction. This approximation results in a simpler calcula- - 
tion, is conservative with respect to the thrust calculation, and 
is quite accurate, although slightly conservative, in predicting 
the net propulsive efficiency. 

Aspect ratio.- The analysis is based on the assumption of very 
small aspect ratio; that is, the triangular plan form contemplated 
is an isosceles triangle of narrow vertex angle. This assumption 
is adopted from reference 1, which treats the lifting triangle (wing), 
and is applied herein to the axially rotating triangle (propeller). 
A reasonable expectation is that the propoller theory will begin 
to fail at about the same upper limiting aspect ratio as will the 
wing theory. This upper limiting aspect ratio appears to be about 
unity at Mach number zero, by comparison with the exact wing theory 
of Erienes (see fig. 5 of reference 1) and the available low-speed 
experimental data on lift-curve slope. At Mach number 1-75, the 
upper limiting aspect ratio appears to be at least 0.75 according 
to the comparison with experiment in figure 10 of reference 1. A 
theoretical derivation in appendix A gives 

/,. ,. .      ,   .. \2  Constant ^   16 (Limiting aspect ratio) = « 
k-il  |M

2
-I| 

for any Mach number. Setting the constant equalto unity provides 
an expression in agreement with the observations just made. Thus 
the limiting aspect ratio for the assumption of the low-aspect- 
ratio theory of reference 1 may be expressed for subsonic speeds as 
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Aspect ratio < 

^1-M2 

and for supersonic speeds as 

Aspect ratio < 
1 

The subsonic boundary will be recognized as the familiar Erandtl- 
G-lauert factor and the • supersonic "boundary, as the arc-tangent of 
the Mach angle. A graph of these boundaries is shown in figure 10 
in which it will be observed that the. theory can be' applied to 
relatively blunt triangles at transonic speeds, except very near 
the speed of sound where the theory is'invalid. 

Twist«- The vanlshingly small twist assumed permitted the 
introduction of the approximations 

sin 7 = tan 7 = 7 

cos 7=1 

where 7    is the complement of the blade angle (fig. 8). On this 
account, therefore, the errors caused by finite twist are no greater 
than would be occasioned by these trigonometric approximations. A 
more fundamental reason' for assuming small twist was to insure 
applicability of the two-dimensional-flow theory of reference 1. 
If the pitch is not large compared with the diameter, successive 
"threads" of the screw surface will approach one another closely 
enough to spoil the approximately two-dimensional character of the 
flow. For both reasons, the pitch-diameter ratio should be 
perhaps 6 or more for good accuracy in the computation of thrust 
and-torq.ue. Somewhat lower values (as the value k.J{  in the 

•example hereinafter) should still provide good estimates for the 
efficiency•since the errors in computed thrust and torque would be 
expected to be comparable and in the same direction. 

Tip speed.- It is tacitly assumed in the theory that the rota- 
tional tip speed is small compared with the forward speed. In 
practice, some deviation from this condition is necessary. This 
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deviation, vül have two effects: first, it will impair the accuracy 
with -which the equations predict the ideal thrust and torque; and 
second, it will make a given amount of leading-edge sweepback less 
effective at the "blade tip than at the apex of the triangle. In 
other words, the velocity component normal to the leading edge will 
increase progressively from the apex to the blade tip "because of 
the velocity added "by the rotation. Low wave drag can he maintained 
with little increase in area "by a slight progressive increase of 
sweepback toward the blade tip. The result is a plan form inter- 
mediate in shape between a triangle and the base of a flatiron. 
(See fig. 11.) The analysis leading to such a plan form is given 
in appendix D. 

DESIGN COHSIDEEATIOrrS 

The high velocities i"sduced at the leading edge according to 
the theory will encourage both separation and formation'of shock 
waves« The leading edge should therefore be rounded and camber 
should be used to eliminate these peak velocities. The cambered 
design should maintain the same section lift coefficients that the 
theory gives for the uncambered propeller (fig. 5) in order to 
retain the high ideal efficiency, but the load on each section 
should be redistributed from leading edge to trailing edge with the 
peak eliminated. The distribution of laminar-flow sections might 
be used, for example. With the load distribution thus specified, 
the method of reference 5 could be used to compute the camber and 
twist. 

The main aim of the triangular-plan-form propeller configura- 
tion is the avoidance of the excessive wave drag that penalizes 
ordinary propellers at transonic speeds. On the other hand, this 
reduction must not be obtained at the expense of too great an 
increase in skin-friction drag or in propeller weight. Reducing 
the vertex angle of the triangle reduces the wave drag but increases 
the area for a given diameter without significantly increasing the 
power absorption. Selection of the vortex angle is thus a com- 
promise between wave drag and skin-friction drag. The skin-friction 
drag may be estimated from von Karman's skin-friction curve. The. 
wave drag for a double-^edge section triangular-plan-form airfoil 
has been derived by Puckett in reference 2. T*he double-wedge sec- 
tion with its sharp leading edge and abrupt change in slope is 
undesirable for the reasons outlined in the preceding paragraph. 
The recommended round-lea&ing-odge sections of the same thickness 
ratio would, however, be expected to give rise to comparable wave 
drag. 
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The high-speed triangular propeller of fixed pitch will he 
stalled at low forward speeds "because of the high pitch. The 
stalled rotating airfoil should experience a large pressure drag 
normal to the surface. A thrust would result from a- forward com- 
ponent of this normal force "because of the helical twist of the 
surface. A rough analysis indicates that the static thrust and 
torque may "be of the order of half or more of the high-speed thrust 
and torque for the same rotational speed. 

Automatic pitch control appears to be impracticahlo for the 
complete triangular propeller; however, the triangular plan form 
may he cut in two near the "base "by a cut parallel to the base. The 
relatively narrow strip behind the cut will exhibit the twist and 
general appearance of an ordinary propeller if the sawed leading 
odge iB rounded. The. two radial halves of this strip could be 
mounted in an automatic-pitch-ccntrol hub. At moderate speeds the 
triangular part of the propeller ahead of the cut could be declutched 
and allowed to windmill freely; the entire thrust would then be 
supplied by the section with automatic- pitch control. Practicability 
is dependent on whether aerodynamic-considerations would require 
the trailing edge to be too thin for such application. 

OTHER APPLICATIONS 

Devices that are basically airscrews or that may employ an air- 
screw include the propeller, windmill, fön, airspeed indicator, and 
air log. With conventional blade forms, difficulties are to be 
expected at speeds near and above the speed of sound. Robert T. Jones 
of the Ames Aeronautical Laboratory has suggested that, with refer- 
ence to an air log, a triangular plan form'like that of figure 1 
defers these difficulties to speeds well into the supersonic. Evi- 
dently, this observation is applicable to all the listed airscrew 
devices. The principle can also bo applied to a twisted triangle 
employed as a supersonic compressor (fan) or turbine (windmill) for 
jet propulsion. 

EXAMPLE. 

Computations are presented in tables I and IT for a propeller 
intended for operation at transonic forward speeds. A two-view 
diagram with the twist of the propeller omitted is shown in figure 11. 
The profile is the double-wedge (unsymmetric-diamond) section treated 
theoretically by Puckett (reference 2). This profile is chosen for 
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purposes of computation only and is not the recommended profile. 
(See section entitled '^Design Considerations."). In accordance with 
reference 2, the line of maximum thickness is taken well forward for low 
supersonic wave drag. The thickness ratio is chosen very small (0.03) 
for the same reason. This thickness ratio corresponds to values of 
absolute thickness comparable with those of contemporary propeller 
design. 

The thickness selection was made on the "basis that the combined 
aerodynamic and tensJle stresses should not be excessive.' The tip 
chords were widened into svept-back extensions for the same reason 
and, also, to avoid flow separation at the tips as a result of 
excessive local lift coefficients. The stress considerations were 
hardly elaborate enough to qualify as a stress analysis; the purpose 
was merely to insure that the proportions were not unreasonable from 
a structural point of view. 

The diameter of the propeller (fig. 11) was taken as 12 feet 
to make it comparable with diameters of present fighter airplanes. 
The leading-edge sweepback of k^°  was chosen as a compromise between 
considerations of wave drag and Bkin-friction drag. The pitch- 
diameter ratio p/D and advance-diameter ratio J were arrived 
at by a cut-and-try process, with a view toward high power at high 
efficiency without excessive tip speed and with the twist within 
the bounds contemplated in the theory. 

The partial modification of the plan form from a uriangle 
toward a flatiron shape follows the considerations developed in 
appendix D. The modification compensates for the effect of the 
excess of the tip velocity over the forward velocity. The degree 
of flatiron curvature has been adjusted to maintain the component 
velocity normal to the leading edge constant at O.707 of the flight 
speed at the design advance ratio. The computations specifying the 
plan form are given in table I. 

Also given in table I are values of the blade chord weighted 
1 ~\ 

in such a way that multiplication of the integrated value by —PV"!^,, 
2 " 

where V is the flight velocity and Cp is the drag coefficient, 
will give the amount of power consumed in overcoming profile drag. 
This power divided by V^ is defined as the profile drag and is 
subtracted from the ideal thrust to obtain the net thrust. Actually, 
only part of this power loss appears as reduced thrust; the remainder 
appears as increased torque. The calculation procedure is thus only 
approximate. 

The main steps in the calculation of the performance of this 
12-foot propeller at Mach number 1.1 are itemized in table H for 
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sea level and 25,000 feet altitude. The resultB show a constant 
net efficiency of 8o percent and a pover absorption of about 
6,200'"brake horsepower at ;^,000 feet and 18,500 "brake horsepover 
at sea level. 

CONCLUDING KEMAEKS 

1. Propellers of triangular plan form appear to "be capable of 
absorbing high power with good efficiency at transonic flight speeds. 

2. Triangular propellers within the scope of the theory should 
exhibit a rigidly behaving wake, Betz 's condition for minimum induced 
loss of energy. 

'3« The. static thrust of the triangular propeller may be of. the'•• 
order of half or more of the.high-speed thrust^ • " . 

k. The principle of the triangular propeller can be" applied to 
extend into the supersonic the useful range of such airscrew devices 
as the air log, absolute airspeed indicator, windmill, and fan. The 
principle can also be applied to a supersonic compressor (fan) or 
turbine (windmill) for jet propulsion. 

Langley Memorial Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Fi^ld, Va., February 21, l$kl 

•. • ••••':   \ •• • . 
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APPENDIX A 

LIMITING ASPECT BATIO FOE ASSUMPTION OF LOW- 

ASPECT -EATIO THEORY 

For small-disturbance velocities the equation for the velocity 
potential in compressible flow has .the linearized form 

V      fc?  öy2  az2 
(Al) 

where the stream velocity is in the x-direction. The assumption 
of two-dimensional flows (lov-aspect-ratio theory of reference 1) 
implies that the first term-Is negligible.in comparison with either 
of the last two so that . 

öy   äz 

(A2) 

The condition for approximately two-dimensional flows is thus 

1 - M2 — « 
afg 
öy2 

(A3) 

Applying this test to the potential of a rotating line (equation (l)) 

$ = *M: 
•r2 - y2 

4*f (" 'Aspect ratio\   2  J "y 
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gives 

ll-M2 'Aspect ratio* CD; F3 

<r2-y2) 
•o\3/2 

« 
coy- U 

st8-»8) ,3/8V^-S 

or 

(Aspect ratio)    « 
16 

r2 

3~£ " 2 

k 
<A*0 

Equation (A*0, as equation (1), is limited in application to the 
' surface of the triangular sirfoil. From the center of the triangle 
to the edges, the right-hcaid side varies from M to 16. Therefore, 
the criterion 

,.        .      ^ s2 < Constant     16 (Aspect ratio) ^ - r «  
\}£  - l|   IM2 " 1 

(A5) 

insures approximately two-dimensional flow over the entire width 
of the- triangle. 
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APPENDIX B 

SUCTION AT EDGES OF A ROTATING ELLIPTIC CYLINDER 

Lamb (reference 3) gives the potential of the flov produced "by 
the azial rotation of an elliptic cylinder as 

# = ii>(.a + "b)2e~2^sin 2r| (Bl) 

•where CD is the angular velocity (clockwise herein), a and "b 
are the major and minor axes, respectively, and | and T] are 
elliptic coordinates that are related to the rectangular coordinates 
hy 

y = c cosh I cos r\ 

z = c sich 1 sin T\ 

(B2) 

The x-axis is the asis of the elliptic cylinder, and the rela* 
tion £ = j*  defines the surface so that 

a = c cosh £ 0 

h as c sinh g 

(The direction assigned herein to CD differs from that implied in 
Lamb "because of opposite sign conventions for the relation of the 
gradient of 0 to the velocity.) 

Equation (Bl) refers to y,z axes at rest in the undisturbed 
fluid and instantaneously coincident -with the y,z axes of the 
elliptic cylinder at the moment under consideration. Alterna- 
tively, <f>   may he regarded as a function of the polar coordi- 
nates r,6 relative to the fixed axes, -where 

V.V-'"-''-'- ' ::.:•*•-•-.;<:&• 
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y = r COB 0 

z = r Bin 0 i (B3) 

The rotation of the axes of the elliptic cylinder 1B taken into 
account by -writing 

9? = 0(r,0 + cot) 

The time derivative of $    is therefore 

50   /V 
  = 0)1 — 

The potential still refers only to disturbances relative to the   __ 
fluid at rest, and its gradient is the absolute particle velocity v. 

Bernoulli 's law states that the excess of the local pressure 
over the stream prossure is 

AP= - -p f 2 — + v2 

2 V Öt 

1 

2 
3D 

Sty) •    W  2 

^1 
This may be written more compactly 

AP - - ip(a^9 + $/ + $f) (Bk) 
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•where $0 = ~L ]}    {f,   - (~L\       and so forth. 

Implicit differentiation of 0 leads to the relations 

h(je\ - z0^) + ^,(Vg " ^z|) 
(B5) 

*, 
_^V^5 

> 

0 . yA - y^e 

(B6) 

•where 

J=7ezn • Vu 

is termed the JacoMan of the transformation from j,z to £,T). 

By differentiation of equations (Bl) to (B3) and subsequent 
simplification, equations (B5) and (B6) lead to 

fe- 
- lq>(a + "b)2c2e"2Hs^22T1 • siDh 2£ cos 2TJ) 

(B7) 

and 

2   .2  icD2(a+l))VU6 
(B8) 
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The substitution of equations (B7) and (B8) in equation (33*0 
gives the excess pressure as- 

/• 

_ ftü2(a + b)2 2c2e"2g(sin22T1 - sinh 2g cos 2g) - (a + b)2e-^   . 

8 J 

The excess pressure force on an element of surface of the 
elliptic cylinder of unit length in the exial direction (x-direction) 
has a component parallel to the y-axis of amount 

dF s> "AP., dz 

At the surface of'the cylinder   (l = |QV 

y = c cosh |n cos i) = a cos T) 

z = c sinh £0 sin TI = b sin T} 
> (BIO) 

Therefore 

.dF = -AE>    - b cos T] dt) 
6=s0 

(Bll) 

Substituting equation (B9)  into equation (Bll)  with   | = |Q, 

eliminating   £0    and   c    by means of equations (BIO), and evaluating   J 

gives 

fXD2(a + b)2 

dF = 

2(a-b)2(sin22T]--|^—cos 2i1]-(a-b)5 

a   -b 
b cos T] dt] 

/ 2        2 2        2  \ 
oya    sin r\ + b    cos t) j 

(B12) 
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For h « a («0 « X) this Is approximately 

ar = - pD2a\(2 sin 2TJ - l) cos r\ &r\ 

8(a2 8to2Ti + *2) 

The integral from the middle of the "bottom surface around the right 
edge to the middle of the top surface is 

Y = 
. 2 

dF 

2 

and 

lim T = imK3 
8 

(B13) 

This gives the suction per unit length acting at the edges of a 
rotating flat plate of semi-width a. 
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•-.•'•'    •    APPENDIX C 

IHTEGRATION OF PRESSURE FIELD OVER PLAHE HOBMAl TO AXES 

OF WAKE OF UHTWISESD PROPELIER 

-For purposes of calculation the flat-ribbon wake may "be con- 
sidered the limiting form öf an elliptic cylinder as the minor axis 
shrinks to aero. Thus, the excess of the local pressure over the 
stream pressure-derived in appendix B is ..applicable ilkevise here. 

In any plane x » Constant, an element of area in the coordi- 
nates i,r\     is given by 3 dg dr| ishere J is the Jacobian defined 
after equation (B6). The oxcesB pressure force on this element of 
area is - • 

dF » ÄP«J..d4 M\ 

Substituting for £P from equation (B9) gives 

P»2(a + T>)2L 2 -2g/o 
dF = 

8 
JscV^fsin2^ - sinh 2£ cos 2iJ - <a + b)2e"^   d| dx\ 

2e"2^ ein22tj+ (e"^ - l) cos 2iJ - (a + b)2e"^ > d| dij 

(Cl) 

The excess pressure force on the entire plane x = Constant is 
obtained by integrating from 0 to 2« in r\   and from |Q to » 

in I, where I -  |Q defines the boundary of the elliptic cylinder« 

The integration gives 

F . Spo2(a + b)2fe"d|0c2 - V^0(a + b)2l     < {(J&) 
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The Unit of this espression as the elliptic cylinder shrinks into 

a flat rihhon ( »0, lQ-^*>0, c—»aj is 

Um F = — PB a 
•b. 16 

a 

Since the semlwidth a   of the flat-ritfbon vake is one-half the 
diameter D of the trianglej this is 

256 

•which is in agreement -with equation (7). 

F = -^-pm2D^ (03) 

V""- '-r^.'i ' '** :     ':'•   *k :t '•  * •;-,'* - 
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APPENDIX D 

COMPONENT OF BESUIE JED "VELOCITY NORMAL TO LEADING EDGE 

OF TWISTED TRIANGLE IN SCREW MOTION 

The twisted triangle may be' defined -within its envelope cone 

r = c-jX (Dl) 

by the ecrev surface 

0 = c2x      , (D2) 

An element of the edge may he expressed "by 

ds = r j_ dr + 0-jjr d0 + T dx'' 

•where r, is a unit vector in the direction of increasing r, 0-j_ is 

a unit vector in the direction of increasing 0, and 1 is a unit 
vector along x. Thu3 

ds _ dr - d0 - 
— = r, — + 0TT — + i 
dx  x dx     dx 

~ rlcl + eirc2 + "* ß°3) 

by equations (Dl) and (D2) . 

Let n he a vector lying in the surface and perpendicular to 
the edge with positive sense outward. It may "be obtained by the 
triple vector product 
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—     ds   / —    ds n = ~x   rnx— 
dx  V   -1- dx 

SW 
^Yr    - c   — 
,dx/ ri     Cl dx 

=   (l + c2 r Jr-j^ - c-^CgTÖ-,   - c-^i (Vk) 

Confounding the axial and rotational velocities gives the 
resultant velocity 

VR = "VT + axcOj^ (D5) 

The velocity component normal to the leading edge of the triangle 
is the negative of the component of the resultant velocity along n 

V_ = 
-VE.n 

n    hi 
2 

C3V + C}C£Dr 

^(l + ogM) • (l • caV)S 

•whence 

tyr v2      C!2(l + c2
2r2) + (i + c 2r2) 

:"-;• ,-:^s*ji',*.,•;- >'-"•'•'.—^•i.l.Y'5-   -'' . .*,-,V ?,'*>"'...*.'i"''   ' " •'"'•'* •* •-:   .-..-• 
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At this point, c-j_ may "be identified with the tangent of the semi- 

vertex angle dr/dx and. Cp, with' the expression 2n/p where p 

is the pitch. 

The assumption of the windmilling condition (zero local angle 
of attack) simplifies the expression with little loss in accuracy 

for other conditions. This condition is specified "by putting Cp = —, 

which is equivalent to J = —,    and gives 
B 

m2r2\ . /,   . v2^2 

'LA2        V     v2 /   \     v2 

0
lfl    + 

V 

<A-2      c2 
1 +Jf_'-_       l 

.    .      1       dx 
But from oquation (Dl),    — =•—,-.. and .from equation (D5) 

• .: c-jr'     dr ' .-•••••    - 

*i"*« n: i'u- 

'V\2    •   • •   1 

1 +  
V2 

Therefore, equation (D7) maj he written 

(D8) 

}j • is • m 
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Equation (D9) relates the velocity component normal to the leading 
odge ?n   to the stream velocity V, the resultant of the stream 

and rotational velocities VR, and the reciprocal dx/dr of the 
elope, of the envelope cone of the twisted triangle. 

The equation ia still valid if equation (Dl) is replaced "by 

r » f(x) 

and c^ is interpreted as the local value of dr/dx, vhioh is nov 

a function of x. Thie generalises the triangle into the flatiron 
and other shape*. Suppose it is desired to maintain a constant 
normal velocity component V« all along the leading edge. A 
variable sveepback or flatiron plan form is required. Equation (D9) 
together with equation (D8) may he interpreted as the differential 
equation in r and x that specifies; the necessary plan form. 
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TABLE I - CALCULATION OP ELAN FORM FOR PROPELLER OF EXAMPLE 

Row Item Value Explanation 

(1) r, ft 0 1-5 3-0 M 5-5 6.0 Radius 

(2) fop)8 1.000 1.051 1.202 1A56 1.681 1.810 /Resultant velocity^2.    .      ir- r2 

\ Stream velocity    J .            J2 R2 

-<3) 
dx 
dr 

1.000 l.02lv 1.080 1.1A6 I.185 1.203 $5 - ©* - k • e 
•W- . X,   ft 0 1-52 3.10 ^•77 5.9O 6.53 Graphical integration 

<5) 
'Projected 
blade chord •6.53 5.01 • 3 A3 1.76 a0.90 

ab ~ x Blade chord;    6-53 - CO ' 

.(6) W 1.000 1.105 1.1*6 2.120 2.828 3.277 (2)2    . 

<7) "   *vt> » 6.53 5-5^ ^•97 3-73 2.5^5 0 (—J   x Blade chord;    (5) x (6) 

swt = 

IE 
b^   dy = 55.2 ft2 

J-R 

aPlan form of this example (fig. 10) deviates from curve of r against x defined by rows (l) 
and (k)  beyond r = 5*5 in order to provide tip fairings. 
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TABLE U - CALCULATION OF PEEFOBMANCE FOE PBOPELLEE OF EXAMPLE 

[M - 1.1] 
-p- 

(1) (2) (3) W (5) (6) (7) 

' J p/D 
Skin-friction 
drag coeffi- 
cient,    CDf 

Pressure drag 
coefficient, CD CDSwt 

Ideal effi- 
ciency,    r\ 

(percent) 

Specified Specified Estimated 
Estimated 

from refer- 
ence 2 

°Df + % 55-2CD §(-#» 
3-^9 ^•37 O.0OU6 0.0037 O.OO83 0.^58 90.0 

(8) (9) (10) (H) (12) (13) (1*0 

True 
airspeed 

(mph) 

Profile 
drag 
(lb) 

CO 

(radians/sec) 

Ideal thrust, 
Ti 
(lb) 

Net thrust, 
T 

(ID) 

Brake- 
horsepower, 

"bhp 

Net efficiency 
n 

(percent) 

(6) x ipv2 
2rfV/jD 

From equa- 
tion (15) 

Ti - Profile 

drag 
« Ü^Wl - J Y] 

550[256             \     p/D/ 
TY/5.5bhp 

Sea level 

837 820 l8fc.2 jkko 6620 l8,U6o ' 80.O 

Altitude of 25,000 ft (density ratio = 0.^5) 

761 305 167.5 2765 2^60 6,21«) 80.O 

o 

H 
CJO 

O 
00 
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NACA TN No. 1303 Fig. 1 

Mach cone: 
\   /"      M = 2 

NATIONAL ADVISORY 
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Figure 1.— Transonic propeller of triangular plan form. 
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Figure 2.— Coordinate system and notation. 

Figure 3.—Flow pattern. 
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Figure 4.— Pressure distribution. 
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Figure 5.—Distribution of normal force along span. 
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Figure 6.— Suction along leading edges. 
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Figure 7.— Distribution of suction thrust along span. 
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Figure 8.— Attitude    T    and angle of attack    a    of a 
blade element at radius    y. 
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Figure 9.— Distribution of thrust component of normal 
force along span. 



Velocity of sound 
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Figure 10.— Regions in which theory of two-dimensional flows is good approximation. GO o 
00 



.196'-I k 

o 
> 

CO o 
CO 

NATIONAL ADVISORY 
COMMITTEE FOR AERONAUTICS 

Figure 11.- Propeller design for Mach number 1.1 arrived at in example. For 
simplicity, the twist is not shown.  (Double-Jffedge section is chosen for 
purposes of computation only and is not recommended in practice.) 
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